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Abstract: The structural integrity, elasticity, and fluidity of lipid membranes are critical for cellular 

activities such as communication between cells, exocytosis, and endocytosis. Unsaturated lipids, the 

main components of biological membranes, are particularly susceptible to the oxidative attack of 

reactive oxygen species. The peroxidation of unsaturated lipids, in our case 1,2-dioleoyl-sn-glycero-

3-phosphocholine (DOPC), induces the structural reorganization of the membrane. We have 

employed a multi-technique approach to analyze typical properties of lipid bilayers, i.e., roughness, 

thickness, elasticity, and fluidity. We compared the alteration of the membrane properties upon 

initiated lipid peroxidation and examined the ability of flavonols, namely quercetin (QUE), 

myricetin (MCE), and myricitrin (MCI) at different molar fractions, to inhibit this change. Using 

Mass Spectrometry (MS) and Fourier Transform Infrared Spectroscopy (FTIR), we identified various 

carbonyl products and examined the extent of the reaction. From Atomic Force Microscopy (AFM), 

Force Spectroscopy (FS), Small Angle X-Ray Scattering (SAXS), and Electron Paramagnetic 

Resonance (EPR) experiments, we concluded that the membranes with inserted flavonols exhibit 

resistance against the structural changes induced by the oxidative attack, which is a finding with 

multiple biological implications. Our approach reveals the interplay between the flavonol molecular 

structure and the crucial membrane properties under oxidative attack and provides insight into the 

pathophysiology of cellular oxidative injury. 

Keywords: bilayer thickness; elasticity; flavonols; fluidity; lipid peroxidation; myricetin; myricitrin; 

quercetin 

 

1. Introduction 

Lipid peroxidation is a complex process associated with the oxidative deterioration of lipids and 

the production of various breakdown products [1,2]. Lipid hydroperoxides and conjugated dienes or 

trienes are considered primary oxidation products, which, due to their instability, break down and 

form secondary oxidation products, among which are aldehydes, ketones, hydrocarbons, alcohols, 

and others [3]. Lipid peroxidation occurrence in the human body is a consequence of oxidative stress, 
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which has been correlated with various diseases and health conditions, including neurodegenerative 

diseases, heart and cardiovascular system conditions, inflammatory immune injuries, and others [4]. 

The presence of polyunsaturated fatty acids (PUFAs) in a phospholipid bilayer makes it highly 

susceptible to oxidative damage, resulting in changes in the membrane properties. For example, a 

decrease in the fluidity leads to the loss of its functionality as a barrier. Furthermore, it has been 

suggested that some peroxidation products, in particular malondialdehyde (MDA), 4-hydroxy-2,3-

nonenal (HNE), and other 4-hydroxy-2,3-alkenals (HAKs) of different chain lengths can affect several 

cell functions, including signal transduction, gene expression, cell proliferation, and the response of 

the target cell [5]. For example, Cajone and Bernelli-Zazzera [6] showed that HNE caused an increase 

in the expression of the hsp 70 gene in human hepatoma cells. Moreover, it was shown that HNE can 

cause the activation of heat shock factor in vitro [7]. To maintain homeostasis, it is crucial to achieve 

balance between a steady formation of pro-oxidants and a similar rate of their consumption by 

antioxidants. If the continuous regeneration of antioxidants is not sufficient, oxidative damage 

occurs, resulting in pathophysiological events [8,9].  

Flavonoids are natural antioxidants with the ability to act as reducing agents, hydrogen donors, 

and singlet oxygen quenchers [10]. Additionally, they possess a metal-chelating potential [11,12]. 

They are polyphenolic compounds, consisting of fifteen carbon atoms arranged in a C6-C3-C6 

configuration. Two aromatic rings are connected through a 3-carbon bridge, usually in the form of a 

heterocyclic ring [13]. The structural characteristics that are presumably most important for their 

antioxidant activity are a hydroxylated B-ring (Figure 1) and the presence of the double bonds C2=C3 

and C=O in the C-ring.  

 

Figure 1. Structure of flavonols: (A) quercetin (QUE); (B) myricetin (MCE); (C) myricitrin (MCI). 

Depending on their substituents, flavonoids can further be classified into several subcategories: 

flavonols, flavones, catechins, flavanones, anthocyanidins, and isoflavonols [14]. Various 

antioxidants, including polyphenols, are commonly found in foods and beverages of plant origin, 

including fruits, vegetables, cocoa, tea, and wine. Therefore, they play an essential role in promoting 

preventive health care through diet [13,15]. The antioxidant activity of a polyphenolic compound is 

determined by the ability of the phenolic hydrogen to scavenge free radicals [16]. Although almost 

all subcategories of flavonoids exhibit antioxidative activity, it has been reported that flavones and 

catechins demonstrate the most powerful protection against reactive oxygen species [15]. In relation 

to their free radical scavenging and metal ions-chelating activities, a multitude of health-promoting 

effects have been observed, including anti-inflammatory, anti-mutagenic, and anti-carcinogenic. 

Furthermore, they are studied as key cellular enzyme functions modulators [15]. 

Flavonol protection against oxidative stress can be achieved through different mechanisms, with 

the direct scavenging of free radicals being one of them. Highly reactive hydroxy groups can react 

with the radical and stabilize the reactive oxygen species, which is followed by the inactivation of the 

radical [15]. Apart from direct scavenging, flavonoids can inhibit lipid peroxidation by the chelation 

of metal ions which usually catalyze the reaction. The impact of transition metal ions on lipid 

peroxidation has been extensively studied [17–21]. Fenton and Fenton-like reactions are often used 

to explain the production of hydroxyl radicals, since it was demonstrated that even trace levels of 

cellular transition metal ions can catalyze a Fenton reaction in vivo at the physiological level of 

hydrogen peroxide [18,22]. 



Antioxidants 2020, 9, 430 3 of 30 

 

The interaction of polyphenolic compounds and lipid membranes could be one of the 

mechanisms in the protection against peroxidation. Depending on the lipid and flavonol chemical 

structure and composition, the interaction between flavonols and biological or model membranes can 

result in the binding of flavonol at the lipid–water interface or the distribution of flavonol in the 

hydrophobic part of the bilayer [23]. For example, Van Dijk et al. [24] investigated the relationship 

between the relative hydrophobicity of flavonoids and their binding with the liposomes using 

fluorescence quenching. The affinity of flavonoids from the subcategory of flavonols for liposomes 

was determined to be much higher than the one of flavanones, which was explained by different 

structural characteristics. It was determined that the planar configuration of flavonols, in contrast to 

the tilted configuration of flavanones, favors intercalation into vesicle membranes. If the flavonols 

partition in the non-polar region of the bilayer, they can influence the membrane fluidity. If the 

membrane is rigid, the probability of lipid radical interactions with other fatty acids is increased, due 

to the limited motion of fatty acid chains [25]. The more hydrophilic flavonols can form hydrogen 

bonds with the polar head groups at the lipid–water interface of the membrane and provide a level 

of protection for the bilayer. Furthermore, different subgroups of flavonols can have different effects 

on the phase transition temperature of various lipids, making membranes more or less ordered [23]. 

Within this study, we used three different flavonols: quercetin (QUE), myricetin (MCE), and 

myricitrin (MCI) (Figure 1), which are all found in various plants. For example, QUE can be found in 

onions, apples, and berries. MCE is also found in various berries and vegetables, as well as in teas 

and wines produced from various plants [26]. MCI has been extracted from numerous plants, such 

as Manilkara zapota and Eugenia uniflora [27]. QUE is one of the most abundant and most studied 

flavonols, owing to its antioxidant and anti-inflammatory properties [28,29]. Furthermore, it has been 

shown that QUE exhibits a hepatoprotective, antifibrotic [30], anti-coagulative [31], and antimicrobial 

[32] activity. MCE has, among others, been suggested as a good candidate for the development of 

new drugs for the treatment of Alzheimer's disease due to its strong free radical-scavenging activity, 

which can block Aβ-induced neuronal death [28]. Its rhamnose glycoside, MCI, shows numerous 

beneficial effects as well, including anti-allergic [33], antioxidant, anti-inflammatory, antifibrotic [34], 

and antinociceptive activity [35]. The three flavonols differ in substituents and, consequently, 

hydrophobicity.  

To investigate the protective effect of three structurally different flavonols on the molecular 

structure, integrity, and elasticity of lipid membranes under oxidative attack, we used a combination 

of techniques. The membrane integrity was measured by its crucial structural parameters, such as 

elasticity, surface roughness, thickness, and fluidity. We hypothesized that the insertion of 

antioxidative flavonols would suppress the disintegration of the lipid membranes during the lipid 

peroxidation. Three different molar fractions (x = 0.01, 0.05, 0.1) of flavonols were chosen. 

Additionally, we wanted to highlight the dependence of the preservation of the membrane on the 

flavonol hydrophobicity, i.e., on their localization inside the bilayer. The most hydrophobic flavonol 

was expected to be hosted deep within the membrane and vice versa. As the model membrane, 1,2-

dioleoyl-sn-glycero-3-phosphocholine (DOPC) was chosen, which possesses two chains of 

monounsaturated fatty acids. Due to the absence of adjacent double bonds with methylene bridges 

between them, which occur in PUFAs, the initiation phase of the lipid peroxidation is slower, while 

the overall mechanism is essentially the same in mono- and polyunsaturated fatty acids [36]. The 

main difference is in the occurrence of different peroxidation products, which are formed as a 

consequence of conjugation. Mass Spectrometry (MS) was used to identify and compare the lipid 

peroxidation products before and after the incorporation of flavonols in different molar fractions, 

while Fourier Transform Infrared Spectroscopy, Attenuated Total Reflectance technique, (FTIR-ATR) 

was used to determine the extent of the lipid peroxidation reaction and quantify the inhibition in the 

samples with flavonols. Atomic Force Microscopy (AFM) and Force Spectroscopy (FS) were used to 

analyze the nanomechanical and topological properties of the lipid bilayers, such as roughness 

(determined from the AFM), thickness, and elasticity defined via Young’s modulus (determined from 

force–distance curves (FS)). Dynamic Light Scattering and electrophoretic measurements (DLS/ELS), 

as well as Electron Paramagnetic Resonance (EPR) and Small Angle X-Ray Scattering (SAXS) 



Antioxidants 2020, 9, 430 4 of 30 

 

measurements provided further information on the flavonol antioxidative role in the preservation of 

membrane integrity. Our results demonstrate the unique capability of this multi-technique approach 

and indicate its potential to deeply enhance the understanding of cellular oxidative injury. 

2. Materials and Methods  

2.1. Chemicals 

Iron(II) chloride tetrahydrate (98%) was purchased from Alfa Aesar, (Ottawa, ON, Canada). 

Myricetin (>97%) and myricitrin (>98%) were purchased from TCI Chemicals Pvt. Ltd. (Chennai, 

India). Quercetin (≥95%) and phosphate-buffered saline (PBS) buffer (PBS tablets, pH 7.4, Ic = 150 mM) 

were purchased from Sigma-Aldrich (St. Louis, MO, USA). 1-2-dioleoyl-sn-glycero-3-

phosphocholine (DOPC) was supplied by Avanti Lipids (Industrial Park Drive Alabaster, AL, USA). 

Coumarin hydrazine (CHH) was synthesized at the UL-Faculty of Pharmacy. Methanol (99.5%) and 

hydrogen peroxide (30% p.a.) were purchased from Kemika, Zagreb. Chloroform (99.93%) p.a., was 

purchased from Lach-ner Ltd. (Neratovice, Czech). The EPR probe 5-DOXYL-stearic acid and 2,2-

diphenyl-1-picrylhydrazyl (DPPH) were purchased from Sigma Aldrich (St. Louis, MO, USA). All 

the chemicals were used without further purification. 

2.2. Preparation and Oxidation of Liposomes with and without Inserted Flavonols  

The DOPC liposomes were prepared by dissolving DOPC in chloroform. The QUE, MCE, and 

MCI were inserted in three different molar fractions (0.01, 0.05, 0.1) by mixing methanol solution of 

each flavonol with chloroform solution of DOPC. Solvents were evaporated using a rotary evaporator 

and the remaining films were dried in a vacuum. The dried films were dispersed in PBS by manual 

shaking at room temperature. During rehydration, the lipid film was gradually scraped off the wall 

of the glass bottle by alternately immersing the flask in the ice and hot water. The liposome 

suspension was left to stabilize overnight. Multilamellar liposomes were used to avoid the loss of 

lipids and flavonols during the process of extrusion, except for the DLS measurements. The 

concentration of lipids was adjusted for different methods and will be stated in the corresponding 

sections. The lipid peroxidation was initiated by the addition of FeCl2 × 4H2O and H2O2. The final 

concentrations of FeCl2 × 4H2O and H2O2 in the suspension were 1 mM, and the reaction was 

advanced for 1 h before measurements. 

Hydrogen peroxide emerged as a major redox metabolite operative in redox sensing, signaling, 

and regulation. The concentration of extracellular H2O2 in redox signaling under physiological 

conditions was between 0.1 μM and 10 μM in oxidative eustress conditions. Higher extracellular 

concentrations (5–500 μM) led to adaptive stress responses. Supraphysiological extracellular 

concentrations in oxidative distress (5 μM < c < 1 mM) led to the irreparable damage of biomolecules 

[37]. Since we wanted to initiate damage of the lipid molecules, we used the 1 mM of H2O2 as it was 

in the extracellular solution under oxidative distress conditions. 

In our experiments, the lipid peroxidation process was initiated by the addition of hydrogen 

peroxide and iron(II) ions (Fenton reaction) to the liposome suspension, where hydroxyl radicals 

were formed mainly by one-electron redox reactions between the H2O2 and the pre-existing 

hydroperoxides with transition metal ions. The reactions of ferrous (Fe2+) ions with hydrogen 

peroxide and oxygen can generate ferryl and perferryl species, which are strong oxidants and have 

also been suggested to be capable of initiating radical reactions. In relation to the present approach, 

it must be mentioned that there are other physiological conditions that induce lipid peroxidation, for 

example systems including ascorbate and Fe2+ ions. Even vitamin C, which is a known antioxidant, 

can act as a prooxidant. Under favourable conditions, it contributes to the oxidative damage of lipids 

by reducing Fe3+ to Fe2+ ions (or Cu2+ to Cu+) [38]. The ascorbate/Fe2+ system was used in a study of 

peroxidation and was found to cause a significant degradation of ethanolamine phosphoglycerides 

[39]. Moreover, it has been suggested that the prooxidant effect of vitamin C could not have relevance 
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in vivo [40]. Therefore, by performing experiments using a H2O2/Fe2+ system to initiate lipid 

peroxidation, two opposite (antioxidant and prooxidant) effects were avoided.

2.3. EPR Spectroscopy 

The EPR spectra were collected by a home-modified Varian E-109 spectrometer (Ruđer Bošković 

Institute, Zagreb, Croatia) using a Bruker ER 041 XG microwave bridge working at a microwave 

frequency of 9.3 GHz (i.e., X-band) at room temperature (25 °C). The temperature in the EPR cavity 

was controlled by a Bruker ER 4111 temperature controller using a nitrogen gas flow accurate to 1 

°C.  

2.3.1. Antioxidant Activity  

For the determination of the antioxidant activity, the spectrometry settings were: magnetic field 

modulation frequency 100 kHz, central field 331.0 mT, sweep range 10 mT, sweep time 20 s, 

microwave power 10 mW, and modulation amplitude 0.1 mT. A 2,2-diphenyl-1-picrylhydrazyl 

(DPPH) stable free radical was used to monitor the scavenging capability of flavonols using EPR 

spectroscopy. The stability of the freshly prepared ethanol solution was checked, and no significant 

loss of signal in the EPR signal was recorded within 24 h. A 4050 μL volume of a DPPH stock ethanol 

solution (0.5 mM) was added to 450 μL of a flavonol solution and mixed. The final solution was 

promptly inserted into the EPR capillary, which was then placed in a standard quartz tube. The EPR 

spectra were collected as a function of time initiated by contact with the sample and radical solution. 

The scavenging effect of the flavonol samples on DPPH radicals was obtained from the EPR signal 

intensities calculated by the double integration of the EPR spectra and expressed in arbitrary units. 

The signal intensity of the pure 0.5 mM DPPH solution in PBS, recorded just before starting the 

sample evaluation, was set as the reference signal intensity (I0) for the reaction time t = 0 min. The 

EPR signal intensity of DPPH radicals was decreased upon the flavonol addition and monitored for 

20 min in recording intervals of 0.5 min and 1.0 min, depending on the sample activity. The remaining 

signal intensity, i.e., the remaining DPPH radicals after the reaction time, t, normalized and expressed 

as a percentage, IN, was calculated as: IN = (I/I0) × 100, where I is the signal intensity of the DPPH 

radicals in the flavonol solution measured at time, t. Each sample was analyzed in triplicate. The 

results are presented as mean values. 

2.3.2. Fluidity Change during Lipid Peroxidation 

The experimental parameters for monitoring the fluidity change upon the initiated lipid 

peroxidation were: central magnetic field 331.0 mT, sweep width 10 mT, modulation amplitude 0.1 

mT, and microwave power 4.9 mW. A standard Bruker ER 4111 VT temperature controller with a 

nitrogen gas flow was used to control the temperature within 1 °C. A manganese standard reference, 

Mn2+ in MnO, was used to calibrate the magnetic field of the EPR spectrometer. The EPR spectra were 

simulated with a custom-built program in MATLAB (The MathWorks Inc., Natick, MA, USA) using 

the EasySpin program package (Stoll and Schweiger, 2006) to extract the spectral parameters—either 

one component with a slow dynamic or two components with different dynamics. A three-line, 

narrow EPR spectra is typical for nitroxide free radicals undergoing rapid isotropic motion, which 

can be characterized with aoN. The value of aoN was taken to be one half of the difference in the 

resonance fields of the high- and low-field lines. For the slow component, the distance between the 

outer peaks (2Azz) was monitored.  

All the samples for EPR spectroscopy were prepared with spin probe 5-doxyl stearic acid (5-

DSA) dissolved in ethanol (1% v/v of 200 mM). 

2.4. High Resolution Mass Spectrometry  

2.4.1. Derivatization with 7-(diethylamino)coumarin-3-carbohydrazide (CHH) 
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Due to the low concentrations of lipid peroxidation products (LPPs) as well as the low ionization 

efficiencies—i.e., their low proton affinities—their chemical derivatization is necessary. It provides 

high proton affinities and enhances their ionization in positive ion mode and thus provides the 

detection of numerous LPPs. We used CHH for derivatization, assuming a rapid and specific reaction 

between CHH and aldehydes and ketones. Additionally, the hydrophobicity and relatively high mass 

of CHH were expected to enable the simultaneous extraction of both short aliphatic and nonpolar 

high molecular weight carbonyls with organic solvents. The CHH derivatization enhanced the 

ionization of both aliphatic and lipid-bound carbonyl-containing LPPs, giving access to both small, 

aliphatic, and water-soluble and large, nonpolar, lipid-esterified carbonylated species. The oxidized 

liposomes (1.5 mM) were individually derivatized with CHH (50 μL, 10 mM) at 37 °C for 1 h (Figure 

2). After derivatization, the samples were extracted in the same volume of chloroform, diluted with 

a mixture of methanol and chloroform (2:1, v/v), and analysed immediately. 

 

Figure 2. Scheme of the derivatization with 7-(diethylamino)coumarin-3-carbohydrazide into 

hydrazone. 

2.4.2. Measurement Parameters 

The samples were diluted (to 10 pmol/μL) in a mixture of methanol and chloroform (2:1, v/v) 

and analyzed by direct infusion using a Q Exactive™ Plus Hybrid Quadrupole-Orbitrap™ Mass 

Spectrometer (Thermo Scientific™). Type of mass detector: Orbitrap measuring range m/z: 50–6000 

m/z; mass resolution: 140,000 FWHM (full width at half maximum); mass accuracy: <1 ppm with 

internal calibration, <3 ppm with external calibration. The MS spectra were acquired in Fourier 

Transform Mass Spectrometry (FT-MS) scan mode with a target mass resolution of 100,000 at m/z 400. 

The acquisition period was 15 min. The recorded spectra were analyzed with a Thermo Xcalibur Qual 

Browser (Xcalibur 4.2 SP1, Thermo Fisher Scientific Inc., Waltham, MA, USA). All the spectra were 

manually searched throughout the whole timeframe for all the suspected aliphatic carbonyl 

compounds with a mass accuracy of 5 ppm. 

2.5. FTIR-ATR Spectroscopy  

The concentration of DOPC for the FTIR measurements was adjusted to 20 mg mL−1. The 

spectroscopic measurements were performed using a PerkinElmer “Spectrum 400 Series” 

spectrometer (Jožef Stefan Institute, Ljubljana, Slovenia) equipped with a Horizon ATR accessory 

(Harrick Scientific) with a trapezoidal germanium crystal. Each spectrum was collected at a nominal 

resolution of 4 cm−1 resolution and as mean value of 32 spectra. A special holder for the ATR crystal 

was used. It was placed in contact with an aluminum block and the temperature was controlled by a 

circulating water bath. All the spectra were collected at 40 °C. A quantity of 200 μL of each sample 

was placed onto the ATR crystal and spread over the whole area. The sample was dried by purging 

with dry nitrogen until there was no significant change in the broad band at 3200–3600 cm−1, which 

corresponded to ν(O–H) of the solvent [41]. 

Data Analysis—The Extent of Lipid Peroxidation  

A data analysis was performed by modifying the procedure used by Oleszko et al. [42]. Since 

lipid peroxidation should lead to a change in the integral absorbance of the ν(C=O) band at 1737 cm−1, 

it was analyzed with respect to the νas(CH3) at 2959 cm−1 band, where we expect no changes in the 

absorbance after the reaction [42]. The values of the integral absorbances of both bands were 
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calculated using an Origin Pro 9. According to Bradley and Kretch [43], the IR spectra of solids 

usually consist of peaks which can be described using a Gaussian function, while gases are 

dominantly fitted with a Lorentzian function. Since the lipid membranes were in the fluid phase, the 

peak shape was expected to be a combination of Gaussian and Lorentzian curves. When fitted with 

a linear combination of Gaussian and Lorentzian curves, the bands in the interval 2800–3100 cm−1 

showed a large Lorentzian character, while the band in the interval 1600–1800 cm−1 showed a large 

Gaussian character. This can be explained by the fact that this peak is composed of several slightly 

shifted Lorentzian peaks belonging to different species formed during the lipid peroxidation, which 

cannot be resolved. Therefore, peaks in the interval 2800–3100 cm−1 were fitted to a pure Lorentzian 

curve, while the peak in the interval 1600–1800 cm−1 was fitted to a pure Gaussian curve. In the first 

iteration, all the peak parameters were included in the fit. The obtained band widths were then used 

to compute the average band widths for the systems containing the selected flavonol. Finally, the 

integral absorbances were recomputed using fixed peak widths in order to reduce the parameter 

dependencies. 

The ratio of the integrated absorbances Ai of the i-th sample (i = 0 without flavonols, i = 1, 2, 3 

with flavonols) was calculated according to: 

�� =
��(�(C=O))

��(���(���))
, (1)

for all the samples before and after lipid peroxidation. The change in that ratio after lipid peroxidation 

(LP), ��
�� was determined relatively to that of the control sample, which is the liposome suspension 

before the occurrence of the reaction: 

�� =
��

�� − ��

��

. (2)

If the number of C=O bonds increases, the ratio ��  increases. Finally, the inhibition for each 

flavonol and each molar ratio was calculated using the formula: 

�� =
�� − ��

��
, (3)

where ρ0 corresponds to the relative ratio of the integrated absorbances for the case of DOPC without 

inserted flavonols (i = 0). If added flavonols hinder the lipid peroxidation, Ri exhibits negative values 

with a minimum value of −1, corresponding to the total inhibition of the reaction. In that case, the 

value Ri is a measure of the inhibition of the lipid peroxidation reaction (Appendix A, SI). 

2.6. Dynamic Light Scattering (DLS) and Electrophoretic (ELS) Measurement  

A photon correlation spectrophotometer equipped with a 532 nm green laser (Zetasizer Nano 

ZS, Malvern Instruments, Worcestershire, UK) was used for the determination of the size distribution 

and zeta potential of the unilamellar DOPC liposomes (Avanti’s Mini-Extruder with 100 nm 

membrane) in PBS at (25.0 ± 0.1) °C. The final concentration of the suspension was 0.2 mg mL−1. The 

intensity of the scattered light was measured at a 173° angle. The hydrodynamic diameter (dH) was 

determined from the peak maximum of the volume size function. The zeta potential (ζ) was 

calculated from the electrophoretic mobility using a Smoluchowski approximation (f(κa) = 1.5). The 

hydrodynamic radius values were reported as an average value of 10 measurements, while the zeta 

potential values were reported as an average of 3 independent measurements. The data processing 

was carried out using Zetasizer Software 7.13 (Malvern Instruments LTD, Malvern, Worcestershire, 

UK). 

2.7. Small Angle X-Ray Scattering (SAXS) 

For the SAXS measurements, dried films were dispersed in water instead of PBS to avoid a 

decrease in the electronic contrast and final signal that could appear using the PBS buffer solution. 

To initiate lipid peroxidation, the dried films were resuspended in the water solutions of FeCl2 × 4H2O 
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(10 mM, 250 μL) and H2O2 (10 mM, 250 μL). The lipid peroxidation reaction advanced for 1 hour 

before recording. The final concentration of the samples for the SAXS measurements was 50 mg mL−1. 

The SAXS measurements were carried out in transmission mode at defined temperatures by a 

laboratory SAXS instrument (SAXS-Point 2.0, Anton Paar, Graz, Austria). The SAXS camera was 

equipped with a micro-X-ray source operating at 50 W (point-focus) using Cu-Kα-radiation (λ = 0.1542 

nm) and a 2D X-ray detector (EIGER2 R 500K, Dectris, Switzerland). The SAXS patterns were 

recorded at 571 mm sample-to-detector distance. All the isotropic 2-dimensional SAXS patterns were 

azimuthally averaged to 1-dimensional SAXS-curves. The SAXS curves of pure water were taken for 

background subtraction. The angular q-range was 0.01 nm−1 to 6 nm−1, with q being the magnitude of 

the scattering vector, which corresponds to a total 2θ region of 0.14° to 7° applying the conversion q 

[nm−1] to 2θ(°) using Equation (5). The sample cell in the X-ray beam was a quartz capillary (1 mm 

diameter, wall thickness of 10 μm) with two vacuum tight screwcaps on both ends inserted into a 

thermostatted sample-stage set to a defined temperature (30 °C). The vacuum in the camera during 

the measurement was kept at ≈1 mbar. The exposure time was 300 s times 3. 

The analysis of the scattering data of liposome structures after the lipid peroxidation was 

performed using the programs GIFT [44] and DECON [45], developed by Otto Glatter. GIFT 

(Generalized Indirect Fourier Transformation) is based on the simultaneous determination of the 

form and the structure factor. 

The scattering intensity is expressed by the following equation: 

�(�) = ��(�)�(�), (4)

where P(q) and S(q) are the form and structure factor, respectively, and n is the number density of the 

particles. P(q) describes the internal structure of the particles, while S(q) describes the interaction 

between the particles. The value q is the magnitude of the scattering vector and is related to the 

scattering angle by the following equation:  

q =
4p

l
sin (�) , (5)

where λ is the wavelength of the X-ray and 2θ is the angle of the scattered X-rays. For the lamellar 

structure, the form factor P(q) can be expressed as: 

�(�) =
�����

�� ��(�), (6)

Where A is the area of the lamellar phase. The relation between Pl(q) and the normal bilayer pair 

distribution function pl(r) is the Fourier transformation shown in (7), while the relation between Pl(q) 

and the self-correlation function of electron density function Δρ(r) is the Fourier transformation in 

(8): 

��(�) = 2 ∫ ��(�) cos(��) ��
�

�
, (7)

��(�) = 2 ∫ D��(��)D��(� + ��)���
�

�
. (8)

A Fourier analysis of the multilamellar SAXS patterns (with the sharp Bragg peaks) was 

performed using the in-house Javascript program available online [46]. The input parameters were: 

the number of the visible first Bragg peaks (2); the intensities of the two peaks; the lamellar d-spacing 

of the peaks (6.1 nm); and the sign of the amplitudes (square roots of the intensities) of the two peaks, 

which can be either + or −. Only the combination of − for the two peak amplitudes gave a reasonable 

result for the electron density. 

2.8. Atomic Force Microscopy (AFM) and Force Spectroscopy (FS) 

2.8.1. Preparation of the Supported Lipid Bilayers (SLBs)  

The procedure for the preparation of SLBs is the drop deposition method, which has already 

been reported [47]. Briefly, a drop of multilamellar vesicles (MLVs) suspension (100 μL) was added 
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to the fluid cell with a freshly cleaved mica plate and thermostated at 25 °C. After 10 min incubation, 

due to electrostatic interactions between the DOPC liposomes and mica, the liposomes adsorbed on 

the mica surface and formed SLB [48]. The unadsorbed liposomes were removed by washing the 

surface with the filtered (0.22 μm Whatman) PBS solution.  

2.8.2. AFM Imaging in Fluid and FS Measurements before and after Lipid Peroxidation 

AFM images were obtained by scanning the SLBs on the mica surface in the fluid using an AFM 

FastScan Dimension (Bruker Billerica, USA), operated using the PeakForce QNM mode sing 

Scanfastsyst—Fluid + Bruker probes, with the spring constant (Nom. k = 0.7 Nm−1; Nom. resonant 

freq. ν = 150 kHz). The imaging was performed at 25.0 °C, allowing thermal equilibration before each 

sample imaging. The thermal tune method was used for the cantilever calibration as previously 

described [47,49]. AFM images were collected using random spot surface sampling (at least two areas 

per sample) for each analyzed sample. The quantitative mechanical data was obtained by employing 

DMT modulus within the Bruker software. All the images were processed by first-order two-

dimensional flattening only and analyzed using the NanoScope Analysis software (Version 1.9).  

2.9. Statistical Data Analysis 

Where applicable, the obtained data have been presented as the mean value and the standard 

deviation. A general linear model (GLM) for ANOVA has been used for the statistical comparison. 

The influence of each flavonol and its molar fraction, as well as the interaction between the molar 

fraction and flavonol typ were tested. Tukey’s post hoc HSD (honestly significant difference) test was 

performed to test the differences between the groups. Differences were considered statistically 

significant if p ≤ 0.05. The statistical analysis was performed using the software STATISTICA (data 

analysis software system), version 12.0 (StatSoft, Tulsa, OK, USA). 

3. Results and Discussion  

3.1. Antioxidant Activity of Flavonols 

Most studies of the antioxidant activity of different flavonols have been performed in oils [50], 

emulsions [51–53], and low density lipoproteins (LDL) [54–56]. The antioxidant activity of MCE has 

been shown to be more effective than QUE in oils in a study of oxidative processes by chelating metal 

ions [57], while the opposite effect has been found in fish phospholipid liposomes by measuring the 

amount of thiobarbituric acid-reactive substances (TBARS) produced [58]. We examined the 

antioxidant activity of three structurally different flavonols, QUE, MCE, and MCI, in a PBS buffer 

solution (pH = 7.4) using EPR spectroscopy. The EPR signal intensity of the DPPH radicals decreased 

upon flavonol addition for 20 min in recording intervals of 0.5 min and 1.0 min (Figure 3a). The 

difference between the integral EPR intensities of the reference and the samples in the 20th min 

characterized the amount of radicals scavenged by the various components present in the sample 

acting as radical scavengers. 
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Figure 3. (A) The normalized EPR signal intensity of the DPPH radical measured as a function of the 

reaction time t; (B) the normalized EPR signal intensity (IN) of the DPPH radical at a t = 1200 s reaction 

time for various flavonol solutions (1 vol %). The statistical analysis showed that all the groups (QUE, 

MCE, MCI) significantly differ from each other. 

MCE showed the highest activity in scavenging DPPH radicals, while QUE showed the lowest. 

This is in agreement with the reported study of the antioxidant activity of flavonols in liposomes [59]. 

According to Figure 3b, we can order the flavonol samples in relation to their total radical scavenging 

activity: MCE > MCI > QUE. 

3.2. Products of Lipid Peroxidation with and without Inserted Flavonols from Mass Spectrometry (MS) 

To examine the extent of the lipid peroxidation process initiated by the addition of hydrogen 

peroxide and iron(II) ions to the liposome suspension, we performed MS and FTIR-ATR spectroscopy 

measurements. Lipid peroxidation can lead to structural and dynamic changes of the membrane, 

which can cause an increase in permeability and a change in the lipid ordering and fluidity as well 

as the bilayer thickness [60–64]. Aldehydes and ketones are products of lipid peroxidation and are 

known to play a significant role in many human disorders [65]. 

In our experiments, we used High-Resolution Mass Spectrometry (HR-MS) [66] to qualitatively 

identify the products after induced lipid peroxidation. The lipid peroxidation of multilamellar DOPC 

liposomes and derivatization revealed signals indicating short-chain and long-chain LPPs. (Table S1). 

Small aliphatic LPPs were detected, as well as several carbonylated lipid species (high molecular 

weight). It was possible to observe 11 CHH-derivatized carbonyls with different numbers of carbon 

atoms in the oxidized DOPC liposomes (Table S1). Among the detected products were butanal, 

hexanal, and a few long-chain products which have already been reported [67,68]. In addition to the 

previously mentioned, we also detected acrolein, which is a known neurotoxin produced by lipid 

peroxidation [69,70] and which has been shown to evoke physiological responses at low 

concentrations [71]. 

Based on the data obtained for CHH-derivatized LPPs generated by the oxidation of DOPC, we 

extended our analytical approach to the derivatized oxidized DOPC liposomes with inserted 

flavonols present in three different molar fractions (x = 0.01, 0.05 and 0.1). Figure 4 shows the 

derivatized LPPs of DOPC without incorporated flavonoids, with three selected products displayed 

in smaller inset plots. These products were selected as an example because their peaks gradually 

disappeared with the increase in the molar fraction of quercetin (as shown in Figure 5). DOPC 

liposomes with inserted QUE were chosen as an example because the other two flavonols exhibited 

a stronger inhibitory effect at lower molar fractions (Table S1). Therefore, the total number of LPPs 

with different numbers of carbon atoms was determined for each sample and used to evaluate and 

compare the antioxidative effect of all the flavonols at all molar fractions. In the case of the most 
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hydrophilic flavonol MCI (having a logP of 0.5, in contrast to 1.5 and 1.2 for QUE and MCE, 

respectively [72], the number of observed LPPs decreases the most (to 1, 5, 3 for x = 0.01, 0,05 and 0.1, 

respectively). Furthermore, in the case of the more hydrophobic MCE, the number of LPPs decreases 

less (to 4, 4, 4 for x = 0.01, 0,05 and 0.1, respectively). Finally, for the most hydrophobic QUE, this 

decrease is the least significant (to 7, 4, 5 for x = 0.01, 0,05 and 0.1, respectively). It is known that more 

hydrophobic antioxidants are distributed in the lipophilic part of the membranes and lipoproteins 

[64]. In contrast, hydrophilic flavonols are located near the surface of the membrane. Our results 

confirm the previously reported observations that the rate of radical scavenging within the 

membrane decreases as the radical goes deeper into the interior of the membrane [73]. That implies 

that the flavonols located within the membrane (the more hydrophobic ones) scavenge radicals with 

a lower efficiency than those placed closer to the surface. Given that MCI is located closer to the polar 

region of the DOPC membrane (closer to the surface), it is more exposed to the radicals entering the 

liposome from aqueous media. This antioxidative effect of three different flavonols inserted in the 

liposomes is different than that obtained by measuring the antioxidant activity of flavonols in 

solution by EPR. Specifically, it appears that when incorporated in the membranes, MCI displays a 

higher protection than MCE, which can be correlated with their positions inside the lipid bilayer. This 

indicates that the antioxidative activity of flavonols incorporated in the membrane is different than 

of those in solution, since the protective effect of antioxidants depends not only on their structure but 

their location within the bilayer as well. Therefore, in addition to the EPR antioxidative activity assay, 

the positioning of the flavonols inside membranes should also be taken into account. 

Finally, acrolein vanishes in all samples except one (x = 0.1 MCE) with incorporated flavonols, 

which is of great biological significance due to its known neurotoxic properties, as mentioned 

previously [71]. 

 

Figure 4. Mass spectrum of LPP ions of DOPC with zoomed-in regions corresponding to the 

molecular ions of three derivatized products: hydroxy-octenal (left), hydroxy-oxo-undecenoic acid 

(middle), and oxo-tridecadienoic acid (right). 
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Figure 5. Mass spectra of derivatized LPP ions of DOPC with QUE: top: x = 0.01; middle: x = 0.05; 

bottom: x = 0.1. Zoomed-in regions correspond to the molecular ions of three derivatized products: 

hydroxy-octenal (left), hydroxy-oxo-undecenoic acid (middle), and oxo-tridecadienoic acid (right). 

3.3. FTIR-ATR Spectroscopy 

3.3.1. FTIR Spectrum of DOPC Lipid Film 

To further analyse and try to quantify the extent of the lipid peroxidation process in the presence 

of flavonols, we performed FTIR-ATR spectroscopy measurements. Figure 6 shows the FTIR-ATR 

spectrum of DOPC. The assignment of the bands to the specific functional group vibration modes has 

been made by comparing the obtained spectra with literature data [42,74–76]. 
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Figure 6. FTIR-ATR spectrum of DOPC with two analyzed bands pointed out. 

The 3000–2800 cm−1 region in the infrared spectra usually corresponds to ν(C–H) vibrations of 

the methylene and methyl groups in aliphatic molecules. Two bands with the highest absorbance in 

that area are near 2924 and 2854 cm−1, and they are assigned to methylene antisymmetric and 

symmetric stretching vibrations, respectively. The band observed near 3006 cm−1 corresponds to the 

stretching vibration of the =C–H cis-olefinic groups, while the shoulder near 2959 cm−1 is attributed 

to the antisymmetric stretching of methyl groups. A strong band near 1737 cm−1 is assigned to 

carbonyl band stretching, while the weaker band around 1652 cm−1 is associated with cis C=C bond 

stretching. Methylene bending bands (scissoring) can be found around 1466 cm−1, and near 1377 cm−1 

is the band that can be attributable to the symmetrical bending vibrations of methyl groups. The 

vibrational bands in the region below 1300 cm−1 arise from the polar headgroup. The antisymmetric 

PO2− stretching is located around 1246 cm−1, while the symmetric stretching is located around 1091 

cm−1. The band around 1172 cm−1 corresponds to single-bond C–O stretching. Antisymmetric and 

symmetric choline stretching (C–N+–C) is located near 969 cm−1 and 926 cm−1, respectively. 

3.3.2. The Extent of Lipid Peroxidation 

The extent of lipid peroxidation was quantified by calculating the inhibition (Ri) according to the 

Equations (1)–(3). As shown in Appendix A, Ri corresponds to the inhibition only if the incorporation 

of flavonols does not change the absorption coefficient of the present species as well as the ratio of 

formed LPPs significantly. However, it can be observed that at the highest flavonol ratio this effect 

cannot be neglected, since the absolute values of Ri are greater than 1. Indeed, the addition of 

flavonols can alter the membrane properties [47], which leads to a change in the molar absorption 

coefficient. All three flavonols exhibit an antioxidative effect upon initiated lipid peroxidation (Table 

S2, Figure 7). The statistical analysis showed that there is no significant difference (p = 0.22) between 

the obtained results for different types of flavonols and different molar fractions. Although, visually, 

the largest difference seems to be in the case of QUE (from x = 0.01 to x = 0.1), this was not confirmed 

by the statistical analysis due to the large SD. Therefore, a direct comparison of the three flavonols in 

the context of their inhibitory activity cannot be made. However, the fact that all flavonols at all molar 

fractions exhibit antioxidative behaviour is in accordance with the MS measurements (Table S1).  
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Figure 7. The inhibition of lipid peroxidation (Ri) for three molar fractions of QUE, MCE, and MCI. 

3.4. Characterization of the Structural Changes of DOPC and Flavonol-Inserted DOPC Liposomes Resulting 

from Induced Lipid Peroxidation 

3.4.1. Dynamic Light Scattering (DLS) and Electrophoretic (ELS) Measurements 

The sizes (hydrodynamic diameter, dH) and zeta potentials of extruded DOPC liposomes were 

determined using DLS and ELS (Table 1). Since lipid peroxidation causes damage to the lipid bilayers 

followed by the formation of lipid fragments, our goal was to examine whether the loss of lipid 

material upon peroxidation causes increased electrostatic interactions between liposomes and, 

consequently, their aggregation. Thus, these results should be treated as a qualitative indication of 

the presence of low molecular size LPPs.  

The extruded multilamellar liposomes exhibited negative zeta potentials ( = −3.4 ± 0.6 mV) 

(Table 1). A slightly lower absolute value of zeta potential for DOPC liposomes in PBS buffer (pH = 

7,  = −2.29 ± 0.54 mV) was obtained in a recent study by Rudolphi-Skórska et al. [77]. In addition, a 

somewhat higher value of DOPC liposome zeta potential  = −4.2 mV) has already been reported [78], 

confirming the reproducibility of the results. The negative zeta potential of the DOPC liposomes in 

PBS buffer is a consequence of ion binding at Ic = 0.15 M. Since the flavonol deprotonation constants 

are pKa = 5.87 and 8.48 [79], pKa = 6.33 [80], and pKa = 5.23 [81] for QUE, MCE, and MCI, respectively, 

anion species formed by the deprotonation of QUE, MCE, and MCI are predominant at pH 7.4. The 

observed zeta potential increase in most samples indicated a significant change in the number of 

charged groups present on the surface of the liposomes.  

Table 1. Changes in the average hydrodynamic diameter (dH) and zeta potential (ζ) of liposomes 

during the insertion of flavonols and induced lipid peroxidation. 

Sample  dH/nm ζ/mV 

DOPC 1049 ± 140 −3.4 ± 0.6 

DOPC/H2O2 + Fe2+ 932 ± 105 −2.8 ± 0.9 

DOPC/QUE (x = 0.01) 148 ± 48 −3.9 ± 0.3 

DOPC/QUE (x = 0.01)/H2O2 + Fe2+ 1319 ± 57 −2.9 ± 0.6 

DOPC / QUE (x = 0.05) 1258 ± 117 −3.8 ± 0.4 

DOPC/QUE (x = 0.05)/H2O2 + Fe2+ 1351 ± 205 −4.9 ± 0.3 

DOPC/QUE (x = 0.1) 202 ± 79 −5.7 ± 0.5 

DOPC/QUE (x = 0.1)/H2O2 + Fe2+ 487 ± 64 −7.1 ± 0.3 

DOPC/MCE (x = 0.01) 107 ± 16 −2.4 ± 0.2 

DOPC/MCE (x = 0.01)/ H2O2 + Fe2+ 577 ± 159 −3.6 ± 0.4 

DOPC/MCE (x = 0.05)  72 ± 6 −2.5 ± 0.5 

DOPC/MCE (x = 0.05)/H2O2 + Fe2+ 1031 ± 152 −3.6 ± 0.2 

DOPC/MCE (x = 0.1)  203 ± 119 −3.7 ± 0.5 
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DOPC/MCE (x = 0.1)/H2O2 + Fe2+ 406 ± 105 −9.8 ± 2.2 

DOPC/MCI (x = 0.01) 163 ± 87 −3.5 ± 0.3 

DOPC/MCI (x = 0.01)/H2O2 + Fe2+ 180 ± 42 −4.0 ± 0.6 

DOPC/MCI (x = 0.05) 222 ± 42 −2.8 ± 0.2 

DOPC/MCI (x = 0.05)/H2O2 + Fe2+ 266 ± 44 −4.3 ± 0.2 

DOPC/MCI (x = 0.1) 155 ± 30 −3.9 ± 0.5 

DOPC/MCI (x = 0.1)/H2O2 + Fe2+ 1746 ± 654 −8.7 ± 1.2 

A decrease in the absolute zeta potential value observed in DOPC liposomes with MCE (x = 0.01 

and 0.05) and MCI (x = 0.05) is related to flavonol packing within the bilayer and the strong 

reorganization of the bilayer (Table 1), which indicates different interactions between flavonols and 

lipid molecules depending on the flavonol hydrophobicity. However, after 1 h of the exposure to 

H2O2 + Fe2+ ions, the zeta potential mainly shifts towards negative values, indicating the charging of 

the surface and suggesting a noticeable loss of lipid material. The majority of the LPPs are polar 

organic compounds that adsorbed on the surface and increased the zeta potential values. In contrast 

to these, pure DOPC and DOPC with QUE (x = 0.01) exhibited a shift towards positive zeta potential 

values, indicating a loss of surface charge. The observed surface charging induced by lipid 

peroxidation resembles the results reported for 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine 

(POPC) liposomes [82],[83]. The present results indicate that the specific behavior of the DOPC 

membrane might be connected to the inner structure of the bilayer, i.e., to the hydrophobic parts of 

the lipids. 

The liposomes prepared from pure DOPC had an average hydrodynamic diameter, dH = (1049 ± 

140) nm. After the lipid peroxidation, they became smaller, with a dH = (932 ± 105) nm. In flavonol-

loaded liposomes, particularly those with inserted MCE (x = 0.05) and MCI (x = 0.1), an increase in 

hydrodynamic diameter appeared. This indicates that the bilayer disintegration might have led to 

the simultaneous liposome aggregation effect [84]. Similar behaviour has already been observed in 

the study of Mosca et al. [82], where the effect of cholesterol and its esterified derivative, cholesteryl 

stearate, has been discussed in terms of the influence on the size and ζ-potential of liposomes.  

The specific influence of QUE, MCE, and MCI on the liposome surface charging during lipid 

peroxidation could not be assigned, but it has been confirmed that the reaction leads to a significant 

loss of material. The observed behaviour was further examined using SAXS.  

3.4.2. Small Angle X-Ray Scattering (SAXS) 

To additionally investigate changes in the structure of DOPC liposomes with and without 

inserted flavonols after induced lipid peroxidation, SAXS has been employed on multilamellar 

liposomes resuspended in iron(II) chloride tetrahydrate and hydrogen peroxide water solutions. In 

this study, we used DOPC multilamellar vesicles (MLVs). To the best of our knowledge, this is the 

first study of the peroxidation of liposome bilayers and multilayers with and without built-in 

flavonols employing this technique. The intensity function of the multilayer shows sharp Bragg peaks 

(Figure 8a(bottom),b). After the induced lipid peroxidation (Figure 8a(top)), only single bilayers 

remained (indicated by the broad peak) with minor traces of multilamellar structures, indicating 

significant damage to the lamellar structure of the liposomes (Table S3).  

Since we did not observe major differences in the intensity functions of liposomes containing 

different flavonols, we calculated the electron density function from the first two Bragg peaks for the 

DOPC liposomes with inserted MCE (x = 0.1). The function increases relatively rapidly from the 

hydrophobic part towards the hydrophilic part and has a period of 6.1 nm, which is the dimension 

of one symmetric unit. The electron density is lowest at the position of the methyl groups of the DOPC 

lipid (r = 0) and highest at the position of the phosphatidyl headgroups of the DOPC lipid (r = ±1.8 

nm). The center of the interstitial water layer is located at r = ±3.05 nm. 
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Figure 8. (A) SAXS curves (lg(I) vs. q) (raw data, not background-subtracted) of lipid solutions, 

separated (shifted verically) according to the nanostructure: (bottom) multilamellar structure (top), 

bilayers, and the rest of the material. (B) SAXS curves in linear plots (I vs. q) of lipid solutions showing 

the multilamellar nanostructure. 

For the peroxidated systems (bilayers with traces of multilayers), which show only a diffuse 

broad peak between scattering vector q, (0.5 < q < 2.5) nm−1, the GIFT and DECON software were used 

to calculate the electron density profiles. From the SAXS curves (Figure 8a), it can be seen that there 

are no significant differences in the electron densities between the different samples. Therefore, to see 

the differences in the structures before and after the induced lipid peroxidation, we chose the sample 

that showed the highest protective effect in the MS measurements, namely DOPC with MCI (x = 0.1), 

which appeared as a pure single-bilayer structure in the SAXS curve after peroxidation. The 

experimental SAXS data of the DOPC_MCI at x = 0.1 after the lipid peroxidation is presented in Figure 

S4a, and the calculated p(r)-function, assuming lamellar symmetry, is shown in Figure S4b. From the 

pair distance function, p(r), the electron density function was calculated (Figure S5). The electron 

density profile showed a large negative slope in the hydrocarbon core of the DOPC bilayers from 0 

nm to +1 nm. 

The effect of lipid peroxidation on the structure of the lipid bilayer was not only observed by 

comparing the shape of the scattering functions before and after the induced lipid peroxidation 

(Figure 9a) but also by comparing the electron density functions (Figure 9b). The electron density 

function for DOPC with MCI (x = 0.1) before the induced lipid peroxidation was higher than the one 

before lipid peroxidation at distances from 0 nm to 0.5 nm from the terminal hydrophobic group. In 

additon, the maxima corresponding to the phosphatidyl headgroups were shifted towards the bilayer 

center. This is in an agreement with the study of the 1-palmitoyl-2-linoleoyl-sn-glycero-3-

phosphatidylcholine (PLPC) bilayer, in which the total density at the center of the bilayer was 

increased upon the initiated oxidation, and the maxima were shifted toward the center [85]. 

Furthermore, when the PLPC liposomes were oxidized, the density at the centre of the bilayer 

increased, corresponding to the partial interdigitation of the phospholipid acyl-chain terminal methyl 

segment. In our case, the density at the centre of the bilayer decreased, indicating that the MCI 

suppressed the aforementioned interdigitation. This observation is another confirmation of flavonol 

antioxidative and protective acitivity upon initiated peroxidation. Observed changes in the lipid 

bilayer structure with inserted flavonols following lipid peroxidation provide evidence for minor 

changes in the membrane hydrocarbon core width.  
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Figure 9. Comparison of the electron densities (B, normalized to the peak maximum) of DOPC_MCI 

at molar fraction x = 0.1 (red) and DOPC_MCI_LP at x = 0.1 (blue) obtained from their respective SAXS 

curves (A, background subtracted). 

3.4.3. Nanomechanical Properties of Supported Lipid Bilayers (SLBs) before and after Induced Lipid 

Peroxidation  

The main task of this research is to investigate the impact of lipid oxidation on the structural 

properties of SLBs in the absence and presence of flavonols. It has been shown that AFM is an efficient 

tool to study the formation mechanism of SLBs [47,86] because it provides information about the 

structure of an adsorbed material and its elastic properties. Flavonol insertion in the membrane 

induces a deformation of the membrane surface, resulting in changes in the membrane roughness 

and thickness. On the other hand, the lipid peroxidation induces the fragmentation of membrane 

lipids as well as structural damage, which should be supressed in the presence of flavonols. In that 

case, the extent of lipid peroxidation manifests through the alteration of crucial structural parameters.  

The protective role of the flavonols depends on the mutual interactions between lipids and 

flavonols. The question that has arisen was whether flavonoids, concerning their hydrophobicity and 

structure, are able to insert laterally and homogeneously in the bilayer. The top views of the 

morphology of DOPC SLBs with and without inserted flavonols are presented in Figures 10, 11, and 

S6. Since the imaging conditions were the same for all the investigated samples, all the observed 

changes in the morphology of the formed SLBs correspond only to the differences between the 

samples. The cross-section profiles (Figure S7) and bilayer thicknesses obtained from the jump in the 

force curves correspond to the single SLB. The homogeneous rough SLB patches are seen irrespective 

of inserted flavonols. 
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Figure 10. Top view of height AFM images on the model (DOPC) SLB without (x = 0) and with inserted 

QUE at different molar fractions before the induced lipid peroxidation. 2D view: (A) DOPC (x = 0); 

(B) (x = 0.01); (C) (x = 0.05); and (D) (x = 0.10). 3D view: (I) DOPC (x = 0); (J) (x = 0.01); (K) (x = 0.05); 

and (M) (x = 0.10). After the induced lipid peroxidation, 2D view: (E) DOPC (x = 0); (F) (x = 0.01); (G) 

(x = 0.05); and (H) (x = 0.10). 3D view: (N) DOPC (x = 0); (O) (x = 0.01); (P) (x = 0.05); and (Q) (x = 0.10). 

Scales of all images are 6 nm. 

. 

Figure 11. Top view of height AFM images on the model (DOPC) SLB without (x = 0) and with inserted 

MCE at different molar fractions before the induced lipid peroxidation. 2D view: (A) DOPC (x = 0); 

(B) (x = 0.01); (C) (x = 0.05); and (D) (x = 0.10). 3D view: (I) DOPC (x = 0); (J) (x = 0.01); (K) (x = 0.05); 

and (M) (x = 0.10). after the induced lipid peroxidation, 2D view: (E) DOPC (x = 0); (F) (x = 0.01); (G) 
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(x = 0.05); and (H) (x = 0.10). 3D view (N) DOPC (x = 0); (O) (x = 0.01); (P) (x = 0.05); and (Q) (x = 0.10). 

Scales of all images are 6 nm. 

At the position where the flavonol molecule is located, a small cavity of water molecules is 

formed, followed by a change in the membrane thickness. The roughness values for each sample 

were corrected for the convolution effect of the tip [87]. The flavonol insertion and the lipid 

peroxidation process alter the initial roughness values, as indicated in Figure 12.  

 

Figure 12. The change in the roughness value induced (A) by the insertion of flavonols in dependence 

of the molar fraction of inserted flavonols and (B) by the induced lipid peroxidation process in the 

SLB as a function of the molar fraction of inserted flavonols. 

Our fine-structure analysis clearly indicated that the presence of flavonols caused a remarkable 

increase in the surface roughness. For example, for the control system, i.e., pure DOPC, the roughness 

is Ra = (0.060 ± 0.008) nm, while in the presence of glycone MCI, the surface roughness dramatically 

increased. A further increase in the MCI molar fraction only slightly modified the surface roughness. 

On the other hand, by insertion of more hydrophobic QUE and MCE, the surface roughness 

increased, but the effect is lower for QUE, which is the most hydrophobic flavonol (Table 2, Figure 

12A). It can be concluded that more hydrophobic flavonols cause smaller changes in the roughness 

than the hydrophilic ones. Therefore, the surface roughness can be a good indicator of the location of 

the flavonols within the bilayer.  

Table 2. The effect of the insertion of flavonols and induced lipid peroxidation on the roughness (Ra), 

Young’s Modulus (E), and bilayer thickness (d) of the model DOPC SLB (n = 6). 

Sample Ra/nm E/MPa d/nm 

DOPC 0.060 ± 0.008 15.4 ± 5.4 4.09 ± 0.53 

DOPC/H2O2 + Fe2+ 0.381 ± 0.018 38.7 ± 6.2 4.42 ± 0.39 

DOPC/QUE (x = 0.01) 0.061 ± 0.015 16.6 ± 4.8 4.25 ± 0.16 

DOPC/QUE (x = 0.01)/H2O2 + Fe2+ 0.085 ± 0.026 36.3 ± 6.7 5.47 ± 015 

DOPC/QUE (x = 0.05) 0.086 ± 0.013 15.7 ± 2.6 4.69 ± 0.19 

DOPC/QUE (x = 0.05)/H2O2 + Fe2+ 0.143 ± 0.018 33.5 ± 4.7 4.32 ± 0.14 

DOPC/QUE (x = 0.1) 0.107 ± 0.008 15.2 ± 1.1 3.91 ± 0.11 

DOPC/QUE (x = 0.1)/H2O2 + Fe2+ 0.104 ± 0.024 27.6 ± 5.3 4.88 ± 0.03 

DOPC/MCE (x = 0.01) 0.073 ± 0.015 16.2 ± 1.2 4.11 ± 0.15 

DOPC/MCE(x = 0.01)/H2O2 + Fe2+ 0.131 ± 0.034 20.6 ± 5.6 4.26 ± 0.09 

DOPC/MCE (x = 0.05) 0.118 ± 0.019 15.2 ± 1.1 4.41 ± 0.16 

DOPC/MCE(x = 0.05)/H2O2 + Fe2+ 0.126 ± 0.019 19.8 ± 1.3 5.09 ± 0.16 

DOPC/MCE (x = 0.1) 0.133 ± 0.032 13.6 ± 2.8 5.14 ± 0.02 

DOPC/MCE (x = 0.1)/H2O2 + Fe2+ 0.133 ± 0.030 12.6 ± 0.1 4.78 ± 0.10 

DOPC/MCI (x = 0.01) 0.200 ± 0.012 20.6 ± 3.2 4.72 ± 0.15 

DOPC/MCI (x = 0.01)/H2O2 + Fe2+ 0.230 ± 0.023 32.9 ± 1.3 4.79 ± 0.13 

DOPC/MCI (x = 0.05) 0.205 ± 0.094 26.1 ± 3.7 5.28 ± 0.02 
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DOPC/MCI (x = 0.05)/H2O2 + Fe2+ 0.230 ± 0.003 30.4 ± 1.8 5.52 ± 0.16 

DOPC/MCI (x = 0.1) 0.215 ± 0.006 33.5 ± 2.8 5.34 ± 0.08 

DOPC/MCI (x = 0.1)/H2O2 + Fe2+ 0.297 ± 0.005 16.3 ± 3.1 4.18 ± 0.06 

Lipid peroxidation causes the fragmentation of lipids and deteorioration of the membrane, 

which is the effect that should be reflected in the roughness values. Our results showed that after the 

induced lipid peroxidation, the roughness of DOPC without flavonols dramatically increased. The 

samples of DOPC SLBs with incorporated flavonols showed a smaller increase or even a decrease in 

the surface roughness, indicating their role in the preservation of the overall integrity of the 

membrane.  

The interaction of lipid molecules and flavonols, as well as the lipid peroxidation effects, were 

further monitored by measuring the elasticity, i.e., Young’s modulus (E). The results are summarized 

in Table 2, Figure 13, and elasticity maps (Figure S8). The elasticity value obtained for the pure DOPC 

SLB (E = 15.4 ± 5.4 MPa) could be attributed to the fluid phase of DOPC and is in an agreement with 

already reported values [88]. The insertion of QUE and MCE caused only a minor change in the 

elasticity. In contrast, the insertion of hydrophilic MCI induced a drastic increase in the elasticity, 

which is in accordance with its presumed location. Due to increased interaction between the 

phosphate headgroups and MCI, the MCI modifies the orientation of the bilayer dipoles, leading to 

the increased number of hydrogen bonds. However, AFM images (Figures 10, 11 and S6) showed 

that the change in the membrane stiffness was not sufficient to disorganize or destabilize the whole 

SLB structure by pore formation. These results are in accordance with already reported studies of 

flavonols and SLBs with aglycone hesperetin and glycone hesperidin [88,89], suggesting different 

flavonol permeation with respect to their own different hydrophobicity or hydrophilicity. Thus, the 

bilayer disordering caused by the flavonol presence, as well as their insertion, is in an agreement with 

their corresponding partition coefficients.  

The distinct increase in the Young’s modulus was observed after the exposure of DOPC SLB to 

hydrogen peroxide and iron(II) ions. In general, the jump in the elasticity after the induced lipid 

peroxidation decreases with an increase in the molar fraction of flavonols (Figure 13b, Table 2), 

indicating the preservation of the membrane elasticity. The only exception is DOPC with MCI at the 

highest molar fraction, where a decrease in the elasticity is observed after induced lipid peroxidation. 

Since the value of E after peroxidation drops to a similar value as in the case of the pure DOPC 

liposomes before lipid peroxidation, this could indicate the MCI leaving from the membrane. 

Another possible explanation for this decrease could be the change in the interactions of the MCI and 

polar headgroups after the lipid peroxidation.  

 

Figure 13. The change of the Young’s modulus value induced (A) by the insertion of the flavonols in 

dependence of the molar fraction of inserted flavonols and (B) by the induced lipid peroxidation 

process in the SLB as a function of the molar fraction of inserted flavonols. 

During lipid peroxidation, the change in the bilayer thickness appears as a consequence of both 

strong reorganization inside the lipid bilayer (intedigitation) and the adsorption of surface-active LPP 
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fragments onto the surface of the membrane. The former effect would cause a decrease in the 

thickness, while the latter would cause an increase. An increase in the membrane thickness of pure 

DOPC SLBs agrees with the aforementioned adsorption of LPP fragments on the surface. Because of 

the competing effects, the changes in thickness after induced lipid peroxidation in the liposomes with 

flavonols does not show a particular trend (Figure 14, Table 2). 

 

Figure 14. The change in the bilayer thickness value induced (A) by the insertion of the flavonols in 

dependence of the molar fraction of inserted flavonols and (B) by the induced lipid peroxidation 

process in the SLB as a function of the molar fraction of inserted flavonols. 

3.5. Fluidity Change upon Initiated Lipid Peroxidation by EPR 

Analysis of the EPR spectra of 5-DSA radicals allowed us to characterize the properties of the 

spin probe environment. The presence of two or more spectral components with different parameters 

may give additional information about the processes occurring in the model lipid membranes. The 

EPR spectra of the 5-DSA spin probe in flavonol samples were recorded in order to establish a 

correlation between the different concentrations, lipid peroxidation, and EPR parameters of the spin 

probe. The parameters that can be followed are the ratio between the fast (mobile) (w(F)) and slow 

(immobile) (w(S)) components and the distance between the outer peaks (2Azz). The hyperfine 

coupling constant of a nitroxide (aoN) probe is sensitive to polarity in the sense that it increases in a 

polar environment. The lipid peroxidation would alter the bilayer fluidity, as can be seen throughout 

the modification of the typical order parameter, S. Fatty acid residues within the bilayer (detected by 

MS spectroscopy) also have an average common orientation along the bilayer. Owing to the axial 

anisotropy of the nitroxide magnetic parameter A, two different EPR spectra are observed according 

to the orientation of the SLB normal with respect to the direction of the external magnetic field 

(assuming the common orientation of the 5-DSA). Therefore, the observation of two distinct EPR 

spectra upon changing the sample orientation reveals internal bilayer spatial ordering. In addition, it 

is expected that the presence of oxygenated groups, aldehyde or carboxylic group, disturbs the fatty 

acid ordering. However, in this case, the consequent disordering of the spin label becomes visible as 

the EPR spectral anisotropy changes. All the EPR spectra were simulated (Figure 15), and the spectral 

parameters are shown in Table 3. 

Table 3. Spectral parameters for DOPC liposomes with and without inserted flavonols before and 

after starting the lipid peroxidation process (T = 291 K). 

Sample  2AZZ/G aoN/G w(S)/% w(F)/% S 

DOPC 58.32 - 100 - 1 

DOPC + H2O2 + Fe2+ 58.20 15.99 32.94 67.06 0.33 

DOPC + QUE (x = 0.01) 58.97 14.89 91.34 8.64 0.91 

DOPC + QUE (x = 0.01) + H2O2 + Fe2+ 60.39 14.62 94.30 5.70 0.94 
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DOPC + QUE (x = 0.05) 59.68 15.00 89.43 10.57 0.89 

DOPC + QUE (x = 0.05) + H2O2 + Fe2+ 60.01 14.29 96.23 3.77 0.96 

DOPC + QUE (x = 0.1) 66.40 13.98 93.78 6.22 0.94 

DOPC + QUE (x = 0.1) + H2O2 + Fe2+ 64.72 14.15 92.39 7.61 0.92 

DOPC + MCE (x = 0.01) 58.37 - 100 - 1 

DOPC + MCE (x = 0.01) + H2O2 + Fe2+ 60.91 15.79 75.01 24.99 0.75 

DOPC + MCE (x = 0.05) 60.18 15.08 95.52 4.48 0.96 

DOPC + MCE (x = 0.05) + H2O2 + Fe2+ 61.45 14.92 92.80 7.20 0.93 

DOPC + MCE (x = 0.1) 60.65 14.97 92.64 7.36 0.93 

DOPC + MCE (x = 0.1) + H2O2 + Fe2+ 62.06 15.05 91.50 8.50 0.92 

DOPC + MCI (x = 0.01) 59.56 13.87 94.28 5.72 0.94 

DOPC + MCI (x = 0.01) + H2O2 + Fe2+ 62.09 13.89 93.81 6.19 0.94 

DOPC + MCI (x = 0.05) 60.03 14.02 93.52 6.48 0.94 

DOPC + MCI (x = 0.05) + H2O2 + Fe2+ 61.57 13.91 95.32 4.68 0.95 

DOPC + MCI (x = 0.1) 60.55 14.22 94.16 5.84 0.94 

DOPC + MCI (x = 0.1) + H2O2 + Fe2+ 62.31 14.09 94.40 5.60 0.95 

 

Figure 15. EPR spectra before a) and after the induced lipid peroxidation b) of DOPC liposomes with 

inserted flavonols QUE (A, x = 0.01; B, x = 0.05; C, x = 0.1), MCE (D, x = 0.01; E, x = 0.05; F, x = 0.1), and 

MCI (G, x = 0.01; H, x = 0.05; I, x = 0.1). 

The S-value of the pure DOPC bilayer is 1.0, while S falls to 0.33 after the addition of hydrogen 

peroxide and iron(II) ions to the liposome suspension, confirming a strong increase in the fluidity 

(Figure S9). A similar increase in the fluidity of the DOPC lipid bilayer has been reported by Tai and 

coworkers [60]. The insertion of flavonols into the DOPC bilayer also caused a decrease in the rigidity 

of the bilayer, but the effect is minor with all the used flavonols. On the other hand, the variation in 

2AZZ, chosen as the most fluidity-sensitive parameter of EPR spectra with the molar fraction of 

flavonols reveals the highest decrease in fluiditiy at all the tested QUE molar fractions in comparison 

to two other flavonols. The response of the system to lipid peroxidation change is shown in the shift 

to higher 2AZZ values, turning the bilayer more rigid in the whole molar fraction range of flavonols. 

Only one exception was observed in the case of QUE at the molar fraction x = 0.1. This behavior is 

consistent with our antioxidant activity analysis of the three flavonols revealing the lower activity of 
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QUE, and are in good agreement with the study of the membrane “fluidity”, which has been 

repressed in microsomes treated with α-tocopherol before but not after peroxidation, suggesting that 

the inhibitory effect was due to its antioxidant activity [89]. However, our observations are consistent 

with the possibility of a number of hydrogen bonds occurring between the hydroperoxyl groups. 

The well-documented modulation of the lipid bilayer fluidity by lipid peroxidation can lead to 

the conclusion that lipid peroxidation affects membrane fluidity through the increase in the number 

of hydroxy and oxo-C-chains, on one side, and the chain shortening on the other. Besides this, the 

non-negligible degree of inhibition of the observed modulation by flavonols within the lipid bilayer 

has been confirmed in this study. 

4. Conclusions 

We have used a multi-technique approach to study the structural changes of the model lipid 

membrane caused by lipid peroxidation and the antioxidative role of three structurally and 

chemically different flavonols, QUE, MCE, and MCI.  

Lipid peroxidation leads to structural alterations that violate the membrane integrity, as 

indicated by the changes in the crucial properties of the membranes, such as elasticity, surface 

roughness, thickness, and fluidity. All these properties are essential for the function of biological 

membranes. 

The antioxidative activity of the three investigated flavonols strongly depends on the 

environment in which they are located. Specifically, when the antioxidative assay was performed in 

the solution, MCE showed the highest activity in the scavenging of free radicals, while the most 

hydrophobic flavonol, QUE, showed the lowest. In contrast to this, the comparison between the 

flavonols when they were incorporated within the liposome membrane displayed different results. 

The most hydrophilic flavonol, MCI, showed a higher protection than QUE and MCE, which are 

more hydrophobic and located deep within the bilayer. This was concluded based on the fact that, 

while the number of identified peroxidation products (taken as the measure of flavonol inhibition) 

decreased with an increase in the molar fraction for all the flavonols, the effect was the most 

pronounced in the case of MCI. Since MCI is located closer to the surface of the membrane, oriented 

towards the aqueous medium, it is more exposed to the incoming radicals and is able to scavenge 

them before they reach the reactive site.  

The loss of multilamellar structure and the loss of lipid material upon lipid peroxidation 

indicated multiple surface processes and the rearrangement of the membrane. As a result of these 

processes, changes in the surface roughness and elasticity were observed. Since these changes are less 

pronounced in the presence of flavonols, it can be concluded that they preserved the supramolecular 

and mechanical properties of the membrane. Finally, the significant degree of inhibition of 

peroxidation process of all investigated flavonols has also been confirmed by the preservation of the 

bilayer fluidity.  

Our study suggests that all the techniques employed can be used as a highly valuable tool in 

other biomedical applications aimed at screening and monitoring the lipid peroxidation effects at the 

cellular level. Furthermore, it was demonstrated that, when studying the protective activity of 

various antioxidants, it is necessary to consider their environment along with their chemical 

properties.  

Supplementary Materials: The following are available online at www.mdpi.com/2076-3921/9/5/430/s1: Figure 

S1: Mass spectrum of LPP ions of DOPC with (A) xMCE = 0.01, (B) xMCE = 0.05 and (C) xMCE = 0.10; Figure S2: Mass 

spectrum of LPP ions of DOPC with (A) xMCI = 0.01, (B) xMCI = 0.05 and (C) xMCI = 0.10; Figure S3: 1D electron 

density profile across the DOPC bilayer with inserted MCE and interstitial water-layer of one unit in the 

multilayer lipid system (x = 0.1). The dimension of one symmetric unit is r = 6.1 nm. The electron density is lowest 

at the position of the methyl groups of the lipid (r = 0) and highest at the position of the phosphatidyl headgroups 

of the lipid (r = ±1.8 nm). The center of the interstitial water layer is located at r = ± 3.05 nm. Figure S4: (A) 

Experimental SAXS-data (black x) and fit (red line) and B: calculated p(r)-function calculated up to r = 7 nm. 

Calculation of the p(r)-function from the SAXS curve I(q) of DOPC-MCI_LP (x = 0.1) using the program GIFT 

assuming lamellar symmetry (B). Figure S5: Calculation of the electron density function from the p(r)-function 
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of DOPC-MCI_LP (x = 0.1) using the software DECON assuming lamellar symmetry, electron-density ρ(r) 

calculated up to r = 5 nm (one symmetric half of the lamellar bilayer (A), and the fit of the p(r)-function (red) to 

the one obtained by GIFT (black, see Figure S4B) (B). Figure S6: Top view of height AFM images on the model 

(DOPC) SLB without (x = 0) and with inserted myricitrin (MCI) at different molar fraction before induced lipid 

peroxidation: 2D view: (A) DOPC (x = 0), (B) (x = 0.01), (C) (x = 0.05) and (D) (x = 0.10) and 3D view: (I) DOPC (x 

= 0) (J) (x = 0.01), (K) (x = 0.05) and (M) (x = 0.10). After induced lipid peroxidation 2D view: (E) DOPC (x = 0), (F) 

(x = 0.01), (G) (x = 0.05) and (H) (x = 0.10); 3D view (N) DOPC (x = 0); (O) (x = 0.01), (P) (x = 0.05) and (Q) (x = 

0.10). Figure S7: 2D-height image and cross sections of the model (DOPC) SLB without and with inserted 

flavonols at different molar fraction before induced lipid peroxidation: (A) DOPC (x = 0), (C) (xQUE = 0.01), (E) 

(xQUE = 0.05), (G) (xQUE = 0.10), (I) (xMCE = 0.01), (K) (xMCE = 0.05), (M) (xMCE = 0.10), (O) (xMCI = 0.01), (Q) (xMCI = 0.05) 

and (S) (xMCI = 0.10), and after lipid peroxidation (B) DOPC (x = 0), (D) (xQUE = 0.01), (F) (xQUE = 0.05), (H) (xQUE = 

0.10), (J) (xMCE = 0.01), (L) (xMCE = 0.05), (N) (xMCE = 0.10), (P) (xMCI = 0.01), (R) (xMCI = 0.05) and (T) (xMCI = 0.10). 

Scales of all images are 6 nm. Figure S8: Nanomechanical maps of the model (DOPC) SLB without and with 

inserted flavonols at different molar fraction before induced lipid peroxidation (A) DOPC (x = 0), (B) (xQUE = 

0.01), (C) (xQUE = 0.05), (D) (xQUE = 0.10), (I) (xMCE = 0.01), (J) (xMCE = 0.05), (K) (xMCE=0.10), (L) (xMCI = 0.01), (R) (xMCI 

= 0.05) and (T) (xMCI = 0.10), and after lipid peroxidation (E) DOPC (x = 0), (F) (xQUE = 0.01), (G) (xQUE = 0.05), (H) 

(xQUE = 0.10), (M) (xMCE = 0.01), (N) (xMCE = 0.05), (O) (xMCE = 0.10), (Q) (xMCI = 0.01), (S) (xMCI = 0.05) and (U) (xMCI = 

0.10). Scales of all images are 40 MPa. Figure S9: EPR spectra of the control sample (DOPC liposomes) a) before 

and b) after lipid peroxidation. Table S1: Derivatized Oxo LPP identified after peroxidation of DOPC liposomes 

with and without inserted flavonols. Table S2: The inhibition of lipid peroxidation for three molar fractions of 

flavonols. Table S3: Nanostructures of the DOPC lipid assigned as m: multilamellar, b: single bilayer and b+: 

bilayer plus traces of multilayers. 
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Appendix A 

The absorbance of the methyl band at 2959 cm1 is the sum of DOPC and lipid peroxidation products' 

(LPPs) absorbances. The number of methyl groups in the sample is considered constant. Therefore, 

before and after lipid peroxidation we have: 

��(���(CH�)) = ��(DOPC) ∙ ��
� (DOPC) + ��(LPP) ∙ ��

� (LPP) (A1)

�������(CH�)� = ��(DOPC) ∙ ��
��(DOPC) + ��(LPP) ∙ ��

��(LPP), (A2)

where nM(DOPC) and nM(LPP) correspond to the number of methyl groups in DOPC and LPPs, 

respectively, while superscript 0 and LP designate these numbers before and after lipid peroxidation. 

It will be assumed that the absorption coefficients of the methyl groups are equal, ��(DOPC) =

 ��(LPP) =  ��. Since the lipid can be oxidized in air (carbonyl compounds were observed in MS of 

DOPC samples without flavonoids and before LP), it is not correct to presume that ��
� (LPP) = 0. The 

total number of methyl groups is constant, because they are neither formed nor destroyed during 

lipid peroxidation: 
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��
��(DOPC) + ��

��(LPP) =  ��
� (DOPC) + ��

� (LPP) =  ��,���  

 (A3)

Thus: 

������(CH�)� = �� ∙ ���
� (DOPC) +  ��

� (LPP)� =   �� ∙  ��,��� (A4)

�������(CH�)� = �� ∙ � ��
��(DOPC) + ��

��(LPP)� =  ��(���(CH�))  (A5)

The analogous equations can be written for the carbonyl stretching band 

��(�(C=O)) = ��
�(DOPC) ∙ ��

�(DOPC) + ��
�(LPP) ∙ ��

�(LPP) (A6)

�����(C=O)� = ��
��(DOPC) ∙ ��

��(DOPC) + ��
��(LPP) ∙ ��

��(LPP), (A7)

It is known that LPPs are formed from the DOPC radical. From the results of the antioxidative activity 

measurements of flavonoids, we can assume that the principal mechanism of inhibition involves 

removal of DOPC radical or the decrease in the rate of its formation, while the rates of parallel 

reactions that lead from DOPC radical to the final LPPs remain approximately constant after addition 

of flavonoids. In that case the ratios of numbers of different LPPs formed remains approximately 

constant, as is the ratio of total number of carbonyl and methyl groups in LPPs: 

��(LPP)

��(LPP)
=

��(LPP�)�(LPP�) + ⋯ + ��(LPP�)�(LPP�)

��(LPP�)�(LPP�) + ⋯ + ��(LPP�)�(LPP�)
 

 

(A8)

��(LPP)

��(LPP)
=

��(LPP�) + ⋯ + ��(LPP�)
�(LPP�)
�(LPP�)

��(LPP�) + ⋯ + ��(LPP�)
�(LPP�)
�(LPP�)

= � ≈ const. 

 

(A9)

Therefore, we can express the equations (A3) and (A4) as: 

��(�(C=O)) = ��
�(DOPC) ∙

��(DOPC)

��(DOPC)
��

� (DOPC) + ��
�(LPP) ∙ ���

� (LPP) (A10)

�����(C=O)� = ��
��(DOPC) ∙

��(DOPC)

��(DOPC)
��

��(DOPC) +  ��
��(LPP) ∙ ���

��(LPP), 

 

(A11)

��(�(C=O)) = ��
�(DOPC) ∙ ��

� (DOPC) + ��̅
�(LPP) ∙ ��

� (LPP) (A10)

�����(C=O)� = ��
��(DOPC) ∙ ��

��(DOPC) +  ��̅
��(LPP) ∙ ��

��(LPP), (A11)

where we introduced averaged absorption coefficient. This coefficient will be constant as long as the 

ratios of different LPPs remain constant. 
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The relative intensities r are  

�� =
��(�(C=O))

��(���(CH�))
, ��� =

���(�(C=O))

���(���(CH�))
 (A12)

or  

�� =
��̅

�(DOPC) ∙ ��
� (DOPC) + ��̅

�(LPP) ∙ ��
� (LPP)

�� ∙  ��,���

,   (A13)

��� =
��̅

��(DOPC) ∙ ��
��(DOPC) + ��̅

��(LPP) ∙ ��
��(LPP)  

�� ⋅  ��,���

 (A14)

�� =
��̅

�(DOPC) ∙ ��
� (DOPC) + ��̅

�(LPP) ∙ ��
� (LPP)

��

, (A15)

��� =
��̅

��(DOPC) ∙ ��
��(DOPC) + ��̅

��(LPP) ∙ ��
��(LPP)  

��

 (A16)

�� =
��̅

�(DOPC) + ���̅
�(LPP) − ��̅

�(DOPC)� ∙ ��
��(LPP)

��
,   (A17)

��� =
��̅

��(DOPC) + � ��̅
��(LPP) − ��̅

��(DOPC)� ∙ ��
��(LPP)  

��

 (A18)

where we introduce the methyl group’s molar fractions as a way to quantify the amount of DOPC 

and LPPs in the system. We will assume that absorption coefficients do not change after lipid 

peroxidation, but we will allow for them to change with the addition of flavonoids in the system, as 

this can change the ratios of LPPs formed. 

��
� =

��̅,�
 (DOPC) + Δ ��̅

 ∙ ��,�
� (LPP)

��

,   (A19)

��
�� =

��̅,�
 (DOPC) + Δ ��̅

 ∙ ��,�
�� (LPP)  

��
 (A20)

The relative changes after lipid peroxidation are: 

�� =
��

�� − ��
�

��
� =

Δ ��̅
 ∙ Δ��,�

 (LPP)

��̅,�
 (DOPC) + Δ ��̅

 ∙ ��,�
� (LPP)

.   (A21)

If the fraction of LPPs before peroxidation is negligible, this equation reduces to: 

�� =
Δ ��̅

 

��̅,�
 (DOPC)

Δ��,�
 (LPP).   (A22)

If we define: 

�� =
�� − ��

��
=

Δ ��̅
 

��̅,�
 (DOPC)

Δ��,�
 (LPP) −

Δ ��̅
 

��̅,�
 (DOPC)

Δ��,�
 (LPP)

Δ ��̅
 

��̅,�
 (DOPC)

Δ��,�
 (LPP)

.   (A23)

and assume that the change in the absorption coefficients is negligible, this corresponds to: 

�� =
Δ��,�

 (LPP) − Δ��,�
 (LPP)

Δ��,�
 (LPP)

.   (A24)

From equation (A24) it is evident that with these assumptions Ri can be used to quantify inhibition. 

References 

1. Repetto, M.; Semprine, J.; Boveris, A. Lipid Peroxidation: Chemical Mechanism, Biological Implications 

and Analytical Determination. In Lipid Peroxidation; InTechOpen Limited, London, UK 2012. 



Antioxidants 2020, 9, 430 27 of 30 

 

2. Devasagayam, T.P.A.; Boloor, K.K.; Ramasarma, T. Methods for estimating lipid peroxidation: An analysis 

of merits and demerits. Indian J. Biochem. Biophys. 2003, 40, 300–308. 

3. Shahidi, F.; Zhong, Y. Measurement of antioxidant activity. J. Funct. Foods 2015, 18, 757–781. 

4. Aruoma, O.I. Free radicals, oxidative stress, and antioxidants in human health and disease. J. Am. Oil Chem. 

Soc. 1998, 75, 199–212. 

5. Parola, M.; Bellomo, G.; Robino, G.; Barrera, G.; Dianzani, M.U. 4-Hydroxynonenal As a Biological Signal: 

Molecular Basis and Pathophysiological Implications. Antioxid. Redox Signal. 1999, 1, 255–284. 

6. Cajone, F.; Bernelli-Zazzera, A. The Action of 4-Hydroxynonenal on Heat Shock Gene Expression in 

Cultured Hepatoma Cells. Free Radic. Res. Commun. 1989, 7, 189–194. 

7. Cajone, F.; Crescente, M. In vitro activation of heat shock transcription factor by 4-hydroxynonenal. Chem. 

Biol. Interact. 1992, 84, 97–112. 

8. Sies, H. Oxidative stress: From basic research to clinical application. Am. J. Med. 1991, 91, S31–S38. 

9. Sies, H. Biochemistry of oxidative stress. Eur. J. Cancer Clin. Oncol. 1987, 23, 1798. 

10. Kähkönen, M.P.; Hopia, A.I.; Vuorela, H.J.; Rauha, J.P.; Pihlaja, K.; Kujala, T.S.; Heinonen, M. Antioxidant 

activity of plant extracts containing phenolic compounds. J. Agric. Food Chem. 1999, 47, 3954–3962. 

11. Tsao, R.; Yang, R. Optimization of a new mobile phase to know the complex and real polyphenolic 

composition: Towards a total phenolic index using high-performance liquid chromatography. J. 

Chromatogr. A 2003, 1018, 29–40. 

12. Heim, K.E.; Tagliaferro, A.R.; Bobilya, D.J. Flavonoid antioxidants: Chemistry, metabolism and structure-

activity relationships. J. Nutr. Biochem. 2002, 13, 572–584. 

13. Ignat, I.; Volf, I.; Popa, V.I. A critical review of methods for characterisation of polyphenolic compounds in 

fruits and vegetables. Food Chem. 2011, 126, 1821–1835. 

14. Hollman, P.C.H.; Katan, M.B. Dietary flavonoids: Intake, health effects and bioavailability. Food Chem. 

Toxicol. 1999, 37, 937–942. 

15. Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An overview. J. Nutr. Sci. 2016, 5, 1-15. 

16. Rice-Evans, C.A.; Miller, N.J.; Paganga, G. Structure-antioxidant activity relationships of flavonoids and 

phenolic acids. Free Radic. Biol. Med. 1996, 20, 933–956. 

17. Halliwell, B.; Gutteridge, J.M.C. Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem. J. 

1984, 219, 1–14. 

18. Repetto, M.G.; Ferrarotti, N.F.; Boveris, A. The involvement of transition metal ions on iron-dependent 

lipid peroxidation. Arch. Toxicol. 2010, 84, 255–262. 

19. Ohyashiki, T.; Suzuki, S.; Satoh, E.; Uemori, Y. A marked stimulation of Fe2+-initiated lipid peroxidation in 

phospholipid liposomes by a lipophilic aluminum complex, aluminum acetylacetonate. Biochim. Biophys. 

Acta Lipids Lipid Metab. 1998, 1389, 141–149. 

20. Tadolini, B.; Hakim, G. The mechanism of iron (III) stimulation of lipid peroxidation. Free Radic. Res. 1996, 

25, 221–227. 

21. Ohyashiki, T.; Kadoya, A.; Kushida, K. The role of Fe3+ on Fe2+-dependent lipid peroxidation in 

phospholipid liposomes. Chem. Pharm. Bull. 2002, 50, 203–207. 

22. Chance, B.; Sies, H.; Boveris, A. Hydroperoxide metabolism in mammalian organs. Physiol. Rev. 1979, 59, 

527–605. 

23. Oteiza, P.I.; Erlejman, A.G.; Verstraeten, S.V.; Keen, C.L.; Fraga, C.G. Flavonoid-membrane interactions: A 

protective role of flavonoids at the membrane surface? Clin. Dev. Immunol. 2005, 12, 19–25. 

24. Van Dijk, C.; Driessen, A.J.M.; Recourt, K. The uncoupling efficiency and affinity of flavonoids for vesicles. 

Biochem. Pharmacol. 2000, 60, 1593–1600. 

25. Verstraeten, S.V.; Nogueira, L.V.; Schreier, S.; Oteiza, P.I. Effect of trivalent metal ions on phase separation 

and membrane lipid packing: Role in lipid peroxidation. Arch. Biochem. Biophys. 1997, 338, 121–127. 

26. Semwal, D.; Semwal, R.; Combrinck, S.; Viljoen, A. Myricetin: A Dietary Molecule with Diverse Biological 

Activities. Nutrients 2016, 8, 90. 

27. Pereira, M.; Siba, I.P.; Chioca, L.R.; Correia, D.; Vital, M.A.B.F.; Pizzolatti, M.G.; Santos, A.R.S.; Andreatini, 

R. Myricitrin, a nitric oxide and protein kinase C inhibitor, exerts antipsychotic-like effects in animal 

models. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2011, 35, 1636–1644. 

28. Choi, S.-M.; Kim, B.C.; Cho, Y.-H.; Choi, K.-H.; Chang, J.; Park, M.-S.; Kim, M.-K.; Cho, K.-H.; Kim, J.-K. 

Effects of Flavonoid Compounds on β-amyloid-peptide-induced Neuronal Death in Cultured Mouse 

Cortical Neurons. Chonnam Med. J. 2014, 50, 45. 



Antioxidants 2020, 9, 430 28 of 30 

 

29. Boots, A.W.; Haenen, G.R.M.M.; Bast, A. Health effects of quercetin: From antioxidant to nutraceutical. Eur. 

J. Pharmacol. 2008, 585, 325–337. 

30. Lee, E.-S.; Lee, H.-E.; Shin, J.-Y.; Yoon, S.; Moon, J.-O. The flavonoid quercetin inhibits 

dimethylnitrosamine-induced liver damage in rats. J. Pharm. Pharmacol. 2003, 55, 1169–1174. 

31. Bucki, R.; Pastore, T.J.J.; Giraud, F.; Sulpicejand, J.C.; Janmey, P.A. Flavonoid inhibition of platelet 

procoagulant activity and phosphoinositide synthesis. J. Thromb. Haemost. 2003, 1, 1820–1828. 

32. Cushnie, T.P.T.; Lamb, A.J. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents 2005, 26, 343–356. 

33. Shimosaki, S.; Tsurunaga, Y.; Itamura, H.; Nakamura, M. Anti-allergic effect of the flavonoid myricitrin 

from Myrica rubra leaf extracts invitro and invivo. Nat. Prod. Res. 2011, 25, 374–380. 

34. Domitrović, R.; Rashed, K.; Cvijanović, O.; Vladimir-Knežević, S.; Škoda, M.; Višnić, A. Myricitrin exhibits 

antioxidant, anti-inflammatory and antifibrotic activity in carbon tetrachloride-intoxicated mice. Chem. 

Biol. Interact. 2015, 230, 21–29. 

35. Meotti, F.C.; Luiz, A.P.; Pizzolatti, M.G.; Santos, A.R.S. Analysis of the Antinociceptive Effect of the 

Flavonoid Myricitrin: Evidence for a Role of the L-arginine-nitric oxide and protein kinase C pathways. J. 

Pharmacol. Exp. Ther. 2006, 316, 789–796. 

36. Reis, A.; Spickett, C.M. Chemistry of phospholipid oxidation. Biochim. Biophys. Acta Biomembr. 2012, 1818, 

2374–2387. 

37. Sies, H. Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress: 

Oxidative eustress. Redox Biol. 2017, 11, 613–619. 

38. Buettner, G.R. The Pecking Order of Free Radicals and Antioxidants: Lipid Peroxidation, α-Tocopherol, 

and Ascorbate. Arch. Biochem. Biophys. 1993, 300, 535–543. 

39. Rehncrona, S.; Smith, D.S.; Åkesson, B.; Westerberg, E.; Siesjö, B.K. Peroxidative Changes in Brain Cortical 

Fatty Acids and Phospholipids, as Characterized During Fe2+ and Ascorbic Acid-Stimulated Lipid 

Peroxidation in vitro. J. Neurochem. 1980, 34, 1630–1638. 

40. Carr, A.; Frei, B. Does vitamin C act as a pro-oxidant under physiological conditions? FASEB J. 1999, 13, 

1007–1024. 

41. Arsov, Z.; Rappolt, M.; Grdadolnik, J. Weakened Hydrogen Bonds in Water Confined between Lipid 

Bilayers: The Existence of a Long-Range Attractive Hydration Force. ChemPhysChem 2009, 10, 1438–1441. 

42. Oleszko, A.; Olsztyńska-Janus, S.; Walski, T.; Grzeszczuk-Kuć, K.; Bujok, J.; Gałecka, K.; Czerski, A.; 

Witkiewicz, W.; Komorowska, M. Application of FTIR-ATR spectroscopy to determine the extent of lipid 

peroxidation in plasma during haemodialysis. Biomed Res. Int. 2015, 2015, 1–9. 

43. Bradley, M.S.; Krech, J.H. High-pressure Raman spectra of the acetone carbonyl stretch in acetone-

methanol mixtures. J. Phys. Chem. 1993, 97, 575–580. 

44. Bergmann, A.; Fritz, G.; Glatter, O. Solving the generalized indirect Fourier transformation (GIFT) by 

Boltzmann simplex simulated annealing (BSSA). J. Appl. Crystallogr. 2000, 33, 1212–1216. 

45. Glatter, O. Convolution square root of band-limited symmetrical functions and its application to small-

angle scattering data. J. Appl. Crystallogr. 1981, 14, 101–108. 

46. Uho;h Kriechbaum, M. Electron density calculator for 1D-lamellar lattices. Available online: 

https://sas.neocities.org/xitami/java/lamdens.html (accessed on 10 April 2020). 

47. Mandić, L.; Sadžak, A.; Strasser, V.; Baranović, G.; Jurašin, D.D.; Sikirić, M.D.; Šegota, S. Enhanced 

protection of biological membranes during lipid peroxidation: Study of the interactions between flavonoid 

loaded mesoporous silica nanoparticles and model cell membranes. Int. J. Mol. Sci. 2019, 20, 2709. 

48. Šegota, S.; Vojta, D.; Pletikapić, G.; Baranović, G. Ionic strength and composition govern the elasticity of 

biological membranes. A study of model DMPC bilayers by force- and transmission IR spectroscopy. Chem. 

Phys. Lipids 2015, 186, 17–29. 

49. Jazvinšćak Jembrek, M.; Vlainić, J.; Čadež, V.; Šegota, S. Atomic force microscopy reveals new biophysical 

markers for monitoring subcellular changes in oxidative injury: Neuroprotective effects of quercetin at the 

nanoscale. PLoS ONE 2018, 13, e0200119. 

50. Shahidi, F.; Wanasundara, U. Effect of Natural Antioxidants on the Stability of Canola Oil; Elsevier: Amsterdam, 

The Netherlands, 1995; pp. 469–479. 

51. Taga, M.S.; Miller, E.E.; Pratt, D.E. Chia seeds as a source of natural lipid antioxidants. J. Am. Oil Chem. Soc. 

1984, 61, 928–931. 

52. Das, N.P.; Pereira, T.A. Effects of flavonoids on thermal autoxidation of palm oil: Structure-activity 

relationships. J. Am. Oil Chem. Soc. 1990, 67, 255–258. 



Antioxidants 2020, 9, 430 29 of 30 

 

53. Chen, Z.Y.; Chan, P.T.; Ho, K.Y.; Fung, K.P.; Wang, J. Antioxidant activity of natural flavonoids is governed 

by number and location of their aromatic hydroxyl groups. Chem. Phys. Lipids 1996, 79, 157–163. 

54. Frankel, E.N.; Waterhouse, A.L.; Teissedre, P.L. Principal Phenolic Phytochemicals in Selected California 

Wines and Their Antioxidant Activity in Inhibiting Oxidation of Human Low-Density Lipoproteins. J. 

Agric. Food Chem. 1995, 43, 890–894. 

55. Teissedre, P.L.; Frankel, E.N.; Waterhouse, A.L.; Peleg, H.; German, J.B. Inhibition of in vitro Human LDL 

Oxidation by Phenolic Antioxidants from Grapes and Wines. J. Sci. Food Agric. 1996, 70, 55–61. 

56. Vinson, J.A.; Dabbagh, Y.A.; Serry, M.M.; Jang, J. Plant Flavonoids, Especially Tea Flavonols, Are Powerful 

Antioxidants Using an in Vitro Oxidation Model for Heart Disease. J. Agric. Food Chem. 1995, 43, 2800–2802. 

57. Mehta, A.; Seshadri, T.R. Flavonoids as antioxidants. J. Sci. Ind. Res. 1959, 18B, 24–28. 

58. Ramanathan, L.; Das, N.P.; Li, Q.-T. Studies on lipid oxidation in fish phospholipid liposomes. Biol. Trace 

Elem. Res. 1994, 40, 59–70. 

59. Gordon, M.H.; Roedig-Penman, A. Antioxidant activity of quercetin and myricetin in liposomes. Chem. 

Phys. Lipids 1998, 97, 79–85. 

60. Tai, W.-Y.; Yang, Y.-C.; Lin, H.-J.; Huang, C.-P.; Cheng, Y.-L.; Chen, M.-F.; Yen, H.-L.; Liau, I. Interplay 

between Structure and Fluidity of Model Lipid Membranes under Oxidative Attack. J. Phys. Chem. B 2010, 

114, 15642–15649. 

61. Wratten, M.L.; Van Ginkel, G.; Van’t Veld, A.A.; Bekker, A.; Van Faassen, E.E.; Sevanian, A. Structural and 

dynamic effects of oxidatively modified phospholipids in unsaturated lipid membranes. Biochemistry 1992, 

31, 10901–10907. 

62. Beranova, L.; Cwiklik, L.; Jurkiewicz, P.; Hof, M.; Jungwirth, P. Oxidation Changes Physical Properties of 

Phospholipid Bilayers: Fluorescence Spectroscopy and Molecular Simulations. Langmuir 2010, 26, 6140–

6144. 

63. Richter, C. Biophysical consequences of lipid peroxidation in membranes. Chem. Phys. Lipids 1987, 44, 175–

189. 

64. Niki, E.; Yoshida, Y.; Saito, Y.; Noguchi, N. Lipid peroxidation: Mechanisms, inhibition, and biological 

effects. Biochem. Biophys. Res. Commun. 2005, 338, 668–676. 

65. Kelsey, N.A.; Wilkins, H.M.; Linseman, D.A. Nutraceutical Antioxidants as Novel Neuroprotective Agents. 

Molecules 2010, 15, 7792–7814. 

66. Suh, J.H.; Niu, Y.S.; Hung, W.-L.; Ho, C.-T.; Wang, Y. Lipidomic analysis for carbonyl species derived from 

fish oil using liquid chromatography–tandem mass spectrometry. Talanta 2017, 168, 31–42. 

67. Milić, I.; Hoffmann, R.; Fedorova, M. Simultaneous detection of low and high molecular weight 

carbonylated compounds derived from lipid peroxidation by electrospray ionization-tandem mass 

spectrometry. Anal. Chem. 2013, 85, 156–162. 

68. Hollebrands, B.; Varvaki, E.; Kaal, S.; Janssen, H.-G. Selective labeling for the identification and semi-

quantification of lipid aldehydes in food products. Anal. Bioanal. Chem. 2018, 410, 5421–5429. 

69. Bernardes, C.P.; Santos, N.A.G.; Costa, T.R.; Sisti, F.; Amaral, L.; Menaldo, D.L.; Amstalden, M.K.; Ribeiro, 

D.L.; Antunes, L.M.G.; Sampaio, S.V.; et al. A Synthetic Snake-Venom-Based Tripeptide Protects PC12 Cells 

from the Neurotoxicity of Acrolein by Improving Axonal Plasticity and Bioenergetics. Neurotox. Res. 2020, 

37, 227–237. 

70. Park, J.H.; Choi, J.-Y.; Jo, C.; Koh, Y.H. Involvement of ADAM10 in acrolein-induced astrocytic 

inflammation. Toxicol. Lett. 2020, 318, 44–49. 

71. Mano, J.I.; Biswas, M.; Sugimoto, K. Reactive Carbonyl Species: A Missing Link in ROS Signaling. Plants 

2019, 8, 391. 

72. PubChem. Available online: https://pubchem.ncbi.nlm.nih.gov/ (accessed on 10 April 2020). 

73. Toro-Uribe, S.; López-Giraldo, L.J.; Decker, E.A. Relationship between the Physiochemical Properties of 

Cocoa Procyanidins and Their Ability to Inhibit Lipid Oxidation in Liposomes. J. Agric. Food Chem. 2018, 

66, 4490–4502. 

74. Sánchez-Alonso, I.; Carmona, P.; Careche, M. Vibrational spectroscopic analysis of hake (Merluccius 

merluccius L.) lipids during frozen storage. Food Chem. 2012, 132, 160–167. 

75. Blume, A. Properties of lipid vesicles: FT-IR spectroscopy and fluorescence probe studies. Curr. Opin. 

Colloid Interface Sci. 1996, 1, 64–77. 

76. Arrondo, J.L.R.; Goñi, F.M. Infrared studies of protein-induced perturbation of lipids in lipoproteins and 

membranes. Chem. Phys. Lipids 1998, 96, 53–68. 



Antioxidants 2020, 9, 430 30 of 30 

 

77. Rudolphi-Skórska, E.; Filek, M.; Zembala, M. The Effects of the Structure and Composition of the 

Hydrophobic Parts of Phosphatidylcholine-Containing Systems on Phosphatidylcholine Oxidation by 

Ozone. J. Membr. Biol. 2017, 250, 493–505. 

78. Maity, P.; Saha, B.; Kumar, G.S.; Karmakar, S. Binding of monovalent alkali metal ions with negatively 

charged phospholipid membranes. Biochim. Biophys. Acta Biomembr. 2016, 1858, 706–714. 

79. Harris, C.S.; Mo, F.; Migahed, L.; Chepelev, L.; Haddad, P.S.; Wright, J.S.; Willmore, W.G.; Arnason, J.T.; 

Bennett, S.A.L. Plant phenolics regulate neoplastic cell growth and survival: A quantitative structure–

activity and biochemical analysisThis article is one of a selection of papers published in this special issue 

(part 2 of 2) on the Safety and Efficacy of Natural Health. Can. J. Physiol. Pharmacol. 2007, 85, 1124–1138. 

80. Álvarez-Diduk, R.; Ramírez-Silva, M.T.; Galano, A.; Merkoçi, A. Deprotonation Mechanism and Acidity 

Constants in Aqueous Solution of Flavonols: A Combined Experimental and Theoretical Study. J. Phys. 

Chem. B 2013, 117, 12347–12359. 

81. Bi, S.; Wang, T.; Zhao, T.; Wang, Y.; Pang, B. Study of the interaction of salmon sperm DNA with myricitrin–

CPB based on the enhanced resonance light scattering signal and its potential application. Spectrochim. Acta 

Part A Mol. Biomol. Spectrosc. 2013, 112, 397–402. 

82. Mosca, M.; Ceglie, A.; Ambrosone, L. Effect of membrane composition on lipid oxidation in liposomes. 

Chem. Phys. Lipids 2011, 164, 158–165. 

83. Makky, A.; Tanaka, M. Impact of Lipid Oxidization on Biophysical Properties of Model Cell Membranes. 

J. Phys. Chem. B 2015, 119, 5857–5863. 

84. Albertini, R.; Rindi, S.; Passi, A.; Pallavicini, G.; De Luca, G. Heparin protection against Fe2+ -and Cu2+ -

mediated oxidation of liposomes. FEBS Lett. 1996, 383, 155–158. 

85. Wong-ekkabut, J.; Xu, Z.; Triampo, W.; Tang, I.-M.; Peter Tieleman, D.; Monticelli, L. Effect of Lipid 

Peroxidation on the Properties of Lipid Bilayers: A Molecular Dynamics Study. Biophys. J. 2007, 93, 4225–

4236. 

86. Attwood, S.; Choi, Y.; Leonenko, Z. Preparation of DOPC and DPPC Supported Planar Lipid Bilayers for 

Atomic Force Microscopy and Atomic Force Spectroscopy. Int. J. Mol. Sci. 2013, 14, 3514–3539. 

87. Engel, A.; Schoenenberger, C.A.; Müller, D.J. High resolution imaging of native biological sample surfaces 

using scanning probe microscopy. Curr. Opin. Struct. Biol. 1997, 7, 279–284. 

88. Picas, L.; Rico, F.; Scheuring, S. Direct Measurement of the Mechanical Properties of Lipid Phases in 

Supported Bilayers. Biophys. J. 2012, 102, L01–L03. 

89. Ohki, K.; Takamura, T.; Nozawai, Y. Effect of .ALPHA.-tocopherol on lipid peroxidation and acyl chain 

mobility of liver microsomes from vitamin E-difficient rat. J. Nutr. Sci. Vitaminol. 1984, 30, 221–234. 

 

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access 

article distributed under the terms and conditions of the Creative Commons Attribution 

(CC BY) license (http://creativecommons.org/licenses/by/4.0/). 

 


